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The Griffith theory of brittle fracture is extended to plastic materials by the concept of 
quasibrittle fracture advanced by Irwin [l] and Orowan @I. Here, instead of the true sur- 

face energy which figures in the Griffith theory, an effective surface energy density is 
taken which is equal to the irreversible work of plastic deformation in a thin layer near 

the surface of the crack plus the true surface energy per unit area [l- 51. 
In the present article it is shown that the magnitude of the ratio of the true surface 

energy to the irreversible work of plastic deformation is of the order of o‘ / E, where 6, 

is the yield stress in tension and E is Young’s modulus. The investigation is based on the 
solution of an elastic-plastic problem for a plate with a crack on a general approach to 
crack propagation in an arbitrary continuous medium 131. The elastic-plastic analogue 
of Griffith’s problem is also considered here. It turns out that, unlike the situation for 

brittle materials, a crack in an elastic-plastic material begins to grow stably as stress 

increases, and only when the load reaches some critical value does instability ensue, 
These qualitative pecularities of crack development in elastic-plastic materials are well 
known (e.g. for metals [4 and 5]}. The solution of the problem referred to above per- 
mits estimation of the limit of applicability of the notion of quasibrittle fracture. 

1. An elratic-plrrtic problem for a plots with (I alit. Let usexa- 
mine a thin plate having an arbitrary tension crack and subjected to the action of tensile 

forces. We shall consider the material of the plate 
to be elastic-perfectly plastic, satisfying the Tesca- 

Saint-Venant yield condition. We introduce a sys- 

tem of rectangular Cartesian coordinates I y in the 
plane of the plate with origin 0 at the tip of the 
crack, the zz -axis being directed along the crack 

(Fig. 1). We shall examine a neighborhood of the 
tip of the crack which is small relative to the 
characteristic linear dimension of the plate, but 

large relative to the characteristic linear dimen- 
sion of the plastic region. We shall assume that 

a condition of local symmetry is satisfied. The 

crack is represented in the zy plane by a semi- 
infinite slit along the negative half of thez-axis, 

Fig. 1 the edges of the slit being free of traction (Fig, 1). 
We recall that the maximum shearing stress at 

every point in au elastic-plastic body with a Tresca yield condition cannot exceed the 

yield stress in shear 1, (2T, = a,). 
We shall show that the solution of the elastic-plastic problem which has been posed 

in Dugdale’s formulation is expressed by the following formulas: 
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Here ax, or, and ?-rV are the components of the stress tensor ; u and ZY are the com- 

ponents of the displacement vector in the t and y directions ; p is the shear modulus ; 
v is Poisson’s ratio, and arg f is the argument of the complex number f (--n e arg I < 
C 3). The function vz - d is analytic outside the semi-infinite cut I < d along the 

real axis and is positive on the continuation of the cut t > d. 

The plastic region is a segment of length d on the continuation of the crack along 
the L -axis (Fig. 1). The width of the region is zero. In thin plates this can physically be 
realized in the form of a slip plane making an angle of 45’ with the plane of the plate. 

In thick plates, characteristic thickened regions remain on the continuation of the crack, 
giving a grooved effect (Fig. 1). The stresses in the plastic region are 

0, = uy = a, f XII = 0. (1.2) 

Equations (1.1) correspond to a choice of the Muskhelishvili potentials 0 (s) and Y (s) 

1 --&I 
ij‘G-r/YY? 

if/a+1/; > 
Y(z) = - ZW (2) (1.3) 

As is easily seen, the equations of the theory of elasticity and the boundary conditions 

are satisfied outside the cut Y = 0, z < d. 
In the problem under consideration, the stress intensity factor N is the loading para- 

meter. This quantity specifies the distribution of stresses and displacements at the point 
at infinity (i.e. at distances which are large compared to d, but small in relation to the 

characteristic linear dimension of the body). 
It should be noted that for plane stress, plates made of elastic-perfectly plastic mate- 

rial generally exhibit a characteristic tendency for formation of the plastic zone in nar- 

row regions of slip. Thus, for example, according to the exact solution of the elastic- 

plastic problem of biaxial tension in a plate with a circular hole fr]. the plastic zone 
goes from a circular region to an elongated one with a width-to-length ratio of 1 : 4 

for a change in the far field from a hydrostatic state by as little as 0.t (Au : (I =. 0.i) . 
According to the solution due to Muskhelishvili, the elastic stress and displacement 

fields near the crack tip are given by the following expressions: 
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where r and 8 are polar coordinates with origin at the crack tip (8 = 0 corresponds to 
the continuation of the crack). The expressions (1.4) are also obtained from Eqs. (1.1) 
and (1.3) as z -, 00, in which case the stress intensity factor then turns out to be equal to 

(1.5) 

Therefore, the size of the plastic region d is found in accordance with Eq. (1.5) from 

the solution of a purely elastic problem ; it is completely determined by the stress inten- 
sity factor. 

The displacement o of the edges of the slit y = 0; t < d are found by Eqs. (I. 1) 

The displacement ~0 of the crack tip is then equal to 

fl.6) 

(1.3) 

The reasoning presented above can be extended in a completely analogous way to the 

general case of an arbitrary number of cracks located along a single straight line in an 
infinite plate, if the only applied loads are normal to the edges of the crack. 

The solution of this class of elastic-plastic problems is obtained by the method of 
Muskhelishvili [6]. The linear dimensions of the zones are determined from the condi- 
tions of solvability of the boundary value problem. Of course, in this case under consider- 
ation, these zones need not necessarily be small with respect to the characteristic linear 
dimension of the plate. In carrying this out, it is necessary to insure that the condition 

101 - os 1 > U, is still satisfied in the elastic region. For some values of the loading 
parameters this relation will cease to hold. Secondary plastic regions then develop in 

which slip proceeds along planes normal to the plane of the plate. 
Analogous solutions of the elastic-plastic problem for a crack of finite length in a 

plate were first obtained by Dugdale [8]. The same problem was later investigated much 

more thoroughly in paper [9]. 

2, Tho onsrgy equation, We shall use the elastic-plastic solution (1.1) for 

the analysis of the development of a cleavage crack in a plate made of an elastic-plastic 

material, Here we shall apply the general approach proposed in [3] which is based on 

the law of conservation of energy in the medium near a small neighborhood of the crack 
tip. As regards local fracture processes and deformations near the crack tip which deter- 
mine the crack growth as a whole, we shall assume only that they are accompanied by a 
certain energy absorption in the formation of the new surface of the crack. 

The general condition of limiting equilibrium of the boundary of the crack which was 
introduced in [3] for an arbitrary continuous medium (Eq. (1.15) of [3]) may be written 
in the following form for the case under consideration: 

lim [+ (3cosB- A,)&] = 2t; 
(7 (2.4) 

3= o,de,+a,de,+2r,,de,= 
s 

$ E-’ [a,* + au’ - 2vw, + 2 (1 + v) TZ] 
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where e,, et, and EIt, are the strain components, fi is the radius of the circle c (Fig. 1). 
The magnitude of the effective surface energy Y+ per unit surface of crack formed is 

equal to the work of plastic deformation on the area of the slip, I’,, , plus the true surface 

energy 4) V-51. 
The integral in Eq. (2.1) is calculated just as in [3]. The distributions of displacements 

and stresses for large fi are given by Eqs. (1.4). Finally, we obtain 

Na = s+E% (2.2) . 

This is Irwin’s formula for plane stress, which was obtained in a different way [lo]. 

Now let us calculate oP using Eqs. (2.2). (2.1) and (1. ‘7) 

(2.3) 

From this we obtain the desired relation between y* and y 

Y = Y,O WE) (2.4) 

We note that physically the quantity F, 

s 
a,dv 

0 

is the resultant of the external forces applied to the plastic layer (0, d) and directed 
along the s-axis. This justifies the force interpretation of r* as some effective surface 

tension of the material applied to the end of the crack. 
Thus the dimension of the plastic region ahead of the crack and the effective surface 

energy are completely determined by the constants of the material E, o,, y and v. For 

most metals, and in particular for structural steels, the magnitude of E / % is of the order 
OfW. Therefore, Eq. (2.4) gives the relation y, z iw, which, in order of magnitude, 
is well supported by experiments [ll-141. 

In processes where intragranular microcracks initiate in steels, the quantity a, should 
correspond to the theoretical strength, which is of the order of 0.f E. 

Here the basic equation (2.4) gives the magnitude of the effective surface energy which 
characterizes the early stage of crack initiation as approximately 10~. i. e. for steels, 

about 2 x 10’ erg/cm*. The numbers obtained agree well with Cottrell’s dislocation 
theory and with the experimental data 1141. 

The very large values of Ye for plastic steels, which reach W erg/cm * are explained 
on the basis of the preceding comments by the fact that the quantity Y. also includes the 

irreversible work in the main mass of the material, e.g. in secondary plastic zones. 
As an example, let us calculate the values of v, and d for a low-carbon steel using 

the data of 1111. y. = 2 x iOg dyne/cm, a, zz 4 x iO* dyne/cm*, E = 2 x iOs2 dyne/cm*. 

From Eqs. (1.5), (1.7) and (2.2), we obtain 

r0 = y* / a, = 5 ~10-~ cm, d = (nEy,)/ (4u,*) = 0.2 cm (2.7) 

Equation (2.4) permits us to treat the concept of quasibrittle fracture and the adsorp- 
tion effect from a unified point of view. It should be remarked that the idea of relating 

Y* to y was apparently first expressed by Gilman [15] ; however, the relationship obtained 
by him on the basis of rough estimates is not verified by experiment. 

Under suitable assumptions Eq. (2.4) can also be obtained by dimensional analysis. 
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Note. The exprf@on (2.3) is written correct to first-order quantities ; while Eq, 

(2.1) is also valid for finite deformations of the elastic medium if 3 denotes the strain 
energy. This may be verified easily if the calculations of Sect. 1 of [3] are checked and 
the local law of conservation of energy is used for finite deformations of the medium 

WI. 
Since the derivatives of the displacements with respect to the coordinates go to zero 

as R 4 cu in the singular solution (1.4), Irwin’s formula (2.2) is also valid for finite 

deformations of an elastic-perfectly plastic solid in a small neighborhood of the crack 
contour. 

3, Thr slrotic-plartfc rnalogue of Gr~ffith.8 problem, Weshall 
consider a plate made of an elastic-perfectly plastic material with a straight crack 

through its thickness. The crack has a length 21 and is in a homogeneous field of ten- 

sile stress u y = 6. We take the edges of the crack to be traction free. We shall use 
rectangular Cartesian coordinates 2 , y with origin at the center of the crack, the .r-axis 

being directed along the crack. 

The plastic regions near the ends of the crack will be segments of length d along the 

continuations of the crack. The solution of the boundary value problem of the two- 
dimensional theory of elasticity 

T -=O for y=O, 6, = 0 for y=o frl<i 

up = 4, for y=c) f<]3/<fj-d (3.1) 
uzo for y=O ItJ>l+d, a,---,d for ]r+iyj-*ao 

is obtained by the Kol~ov~Mu~helishv~li method [8 and 93. This solution can be writ- 
ten as 

J, -!- 3, r= 4 Ijtj 4) (2) (s = r + ;!I) 3, - 0, + 2iT, = 6 - 4i@’ (2) 

2p 
( 
g+ i~)=3~cl,(r)-~)-~fa-2Siyrl,’ (3.2) 

f= 

The radical ,‘ct + d)’ - zs is taken as positive on the upper edge of the cut (---I - d, 
Z+d) alongther-axis,and lnF=hlF! +iagF(--a<ar~P<n) 

Using (3. ‘2) we calculate the displacements a& and, u for y = 0, I < 1 YK t + d: 

2s,l 
U=U(&z*p)= -J-- 

E 
-in(r’-i)+Zln(sinP+)/i--*comb)- 
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The solution (3.2) depends on a single undetermined parameter I, In order to find it 
we invoke the law of conservation of energy and a physical representation of the fracture 

energy which is completely analogous to the Griffith-Irwin-Orowan concepts. At some 
instant of time let the corresponding values of the parameters I and p, the discontinu- 

ity of the u displacement on the interval (I, 1 $- 
f d) , be represented schematically by the triangle 

A sCoBO (Fig. 2). After some time which oorre- 
sponds to increments Al and AS in the parameters 

I and p the segment under study will occupy a 
position which is shifted in the direction of crack 

growth and is represented by the triangle A,&&. 

The points C, and C, correspond to the ends of the 

Fig. 2 plastic zones ; the poinu A,, Arand &&are the 
ends of the crack on the two sides of the plastic 

line of discontinuiqj. 

In accordance with (3.2), the stresses in the plastic regions are 

or# =o., a, =u, -0, ‘;v =O (3.4) 

As the crack tip advances by AZ , the stress okdoes work on the corresponding displa- 
cement. This work is obviously equal to the energy dissipation y* Al. The fracture 
energy y* is considered to be a constant characteristic of the material. We shall not con- 
sider terms of higher order. 

1-H 
r*.51 = 

s 
~“lo(z,ItAl,p+AP)-v(xrl,~))dx+AS (3.5) 

l-+LW 

For small Al the following estimates are valid: 

(AS =: 0 [ (Al)*j) (3.6) 

We expand the function v (z. 1 + Al, $ + Ag) in a Taylor series in powers of 
Al in Eq. (3.5) and let Al + 0, taking the estimates (3.6) into account. We then ob- 
tain the following expression : 

r* = a* 
4( 

(3.7) 

In particular, for d eg I (when p +O) i?u/@l and ao I a@ will approach zero and 
the condition of stationary character of the crack, au/al = au/at will hold. Equation 
(3.7) then becomes identical with (2.2). Using (3.2). we compute 

s z$d+s-‘$ Itg p arc cos (t cos p) + 

I( > 
t=- ; (34 
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With the aid of (3.3). (3.4) and (3.8). we find 

The method of calculation of y*which has been used is analogous to Irwin’s method 

[lo]. We shall now show how y* may be found by applying Griffith’s method, 
Let us consider an elastic medium occupying the fixed region [ .Z / < R where the 

radius R is large compared with the crack length. The state of this system is determined 

by two parameters: 1 and u. According to the law of conservation of energy, the rate 

of doing external work by the external forces applied to the outer contour ItI = R is 
equal to the rate of change of the elastic energy plus the rate of dissipation of energy. 
The parameter 1 can serve as a time-like parameter. We have 

(3.10) 

The distribution of displacements and stresses for large R are found, in accordance 

with (3.2). by the following Muskhelishv~li potentials 

cr)(Z)= ;-$$ +0(2-J) for z3oD (3.11) 

The calculations are carried out with the aid of Eqs. (3.2), (3.3) and (3.11). and also 
using Clapeyron’s theorem ; we obtain 

IV = 3 R ~1(s,cosQ+ r,sinO)u I (r:,ycos8L a,sin8)v]d@- 
’ 0 

i+d 
(3.12) 

-2a, 
s 

U(Z, Z,~)~~=~~+~I_8Ineos?$(v--3)8~s81 

Considering I as the independent parameter, we easily find from Eqs.(3.10) and (3J2) 

T* =~~[2(ln~0~~+~tg~)+Z(~sec~~-tgP)~] (3.13) 

Introducing the dimensionless length k 
a =$$ (l3+) (3.14) 

we finally write the desired relation between B and k in the form of the following 
first-order differential equation : @) i - 2 R (In tttsl3 + B tg B) 

z= ?.‘@sec?B- tg81 
(3.15) 

The field of the integral curves of Eq,(3,15) in the region 0 < h < oo , 0 C fl < 
<n/ 2 is shown in Fig. 3 (the calculations were carried out by G, D. Daianys on the 
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“NAIRI” computer). The stable parts of the curves are shown by the full lines, the un- 
stable portions by the dashed lines, The curve de- 

termined by the equation 

Fig. 3 

divides the entire region of variation of the variables into a region of stable crack growth 

from some original crack (dp i dX > 0) an d a region of instability, in which dp :‘& < I). 

Thus, a crack initially grows monotonically with increase in the load, attaining a ma- 
ximum load at the point of intersection with the curve (3. I6), after which it becomes 

unstable. It is easy to show that in the region of instability all the integral curves ap- 

proach the Griffith-Irwin-Orowan curve 

3@ I t 

asymptotically for large X . 
The curves (3.16) and (3. X7) are shown by the heavy lines in Fig. 3. The graph of 

the limiting load fl, versus the dimensionless 

length of the initial crack a,, is given in Fig.4. 
This curve was obtained from Fig. 3, For 

comparison, the curve of Eq. (3.17) is also 

shown on the same figure. 

The presence of a region of stable crack 
growth in elastic-plastic materials is well 

known from experiments. In particular, the 
remarkable experiments of Irwin [I] and 

McClintock 1171 should be mentioned. These 

Fig. 4 
experiments carried out on aluminum foil 

corroborrate the theory presented here quite 

well. 

In conclusion, we note that the results obtained can also be considered valid for plane 
strain if an approximate model of cracking in an elastic-plastic material is assumed, 
similar to the brittle model of Leonov and Panasiuk [18]. It should be mentioned that 
the study of the elastic-plastic Griffith problem was also undertaken by Goodier and 
Field [19]. However, these authors did not raise the question of the relation of crack 
length to load. 
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